
A Framework for Control and Observation in Distributed

Environments

Warren Smith

Computer Sciences Corporation
NASA Ames Research Center

Mail Stop T27A-2
Moffett Field, CA 94035

wwsmith@nas, nasa. gov

NAS Technical Report Number: NAS-01-006

June 2001

Abstract

As organizations begin to deploy large computational grids, it has become apparent that systems

for observation and control of the resources, services, and applications that make up such grids

are needed. Administrators must observe the operation of resources and services to ensure that

they are operating correctly and they must control the resources and services to ensure that their

operation meets the needs of users. Further, users need to observe the performance of their

applications so that this performance can be improved and control how their applications

execute in a dynamic grid environment. In this paper we describe our software framework for

control and observation of resources, services, and applications that supports such uses and we

provide examples of how our framework can be used.

1. Introduction

A recent trend in government and academic research is the development and deployment of

computational grids [12, 17]. Computational grids are large-scale distributed systems that

typically consist of high-performance compute, storage, and networking resources. Examples of

such computational grids are the DOE Science Grid [3], the NASA Information Power Grid [8,

22], and the NSF Partnerships for Advanced Computing Infrastructure [9, 10]. Most of the work

to deploy these grids is in developing the software services to allow users to execute applications

on large and diverse sets of distributed resources. These services include security, execution of

remote applications, managing remote data, access to information about resources and services,

and so on. There are several toolkits that provide these services, such as Globus [5, 16], Legion

[7, 19], and Condor [2, 23].

NASA is building a computational grid called the Information Power Grid (IPG) that is based

upon the Globus toolkit. The IPG currently consists of resources and users at four NASA centers

and our attempt to deploy a production grid of this size has highlighted the need for systems to

observe and control the resources, services, and applications that make up such grids. We have

found it difficult to ensure that the many resources in the IPG and the grid services executing on

those resources are performing correctly. We have also found it cumbersome to perform



administrative tasks such as adding grid users to our resources. These observations have led to

our development of a software framework to address these needs.

This paper provides an overview of our framework that provides a secure, scalable, and

extensible framework for making observations on remote computer systems, transmitting this

observational data to where it is needed, performing actions on remote computer systems, and

analyzing observational data to determine what actions should be taken. The next section will

provide an overview of our system. Section 3 provides two examples of how our framework can

be used. Section 4 provides a summary and describes our planned future work.

2. CODE Framework

We have named our framework for Control and Observation in Distributed Environments

CODE, for obvious reasons. This section describes the architecture of our system and its

implementation.

2.1. Architecture

We call the software that we are developing a framework because it contains the core code that is

necessary for performing monitoring and management. Users only need to add components to

this framework and start the framework running. For example, if a user wants to create a host

monitor, she would create components to monitor processes, files, network communications, and

so on. The user would then add these components to the framework and tell the framework to

begin monitoring the host. This same process is used for adding components to perform

management actions. In fact, the typical process will be easier because CODE provides a set of

commonly used components for observing various properties and performing various actions and

all a user will have to do is select which of these components to use.

The CODE architecture is shown in Figure 1. The components that are shown with a solid

outline are those that are supplied by our framework, the components that are shown with a

dashed outline are provided by the user, and the gray boxes show the logical grouping of the

components in our framework into entities that may be on different hosts. The logical

components of our framework are observers that perform and report observations, actors that

perform actions, managers that receive observations, make decisions, and request actions, and a

directory service for locating observers and actors. The next subsections describe these

components in more detail.

2.1.1. Observer

An observer is a process on a computer system that provides information that can be measured

from the system it is executing on. This could be information about the computer system,

services or applications running on that computer system, or information that is not related to the

computer system but that is accessible from that computer system. Examples of this last type of

information are scheduling queue information from a front-end system and the current use of a

local area network. An observer provides information in the form of events. An event has a type

and contains data in the form of <name, value> pairs. An observer allows a manager to query for

a single event or to subscribe for a set of events. A subscription is useful, for example, if a user

wants to be notified of the load on a system every minute.

2



search for i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i__iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii•

observers and

controllers

request

events

advertise

observer

advertise

controller

events

perform

action

action

results

Figure 1. Architecture of the CODE framework.

An observer consists of the following components:

* Sensor. A sensor is a component that is used to sense or measure some property. For

example, a CPU load sensor would measure the CPU load of a host, a network bandwidth

sensor would measure the available bandwidth between two hosts, or a convergence

sensor might measure the convergence rate of an application. A sensor is a passive

component that does not perform any measurements until it is asked to by the sensor

manager. We are providing a set of sensors as part of our framework, but users will most

likely need to implement sensors for their specific purposes.

* Sensor Manager. The sensor manager receives event requests or subscriptions from the

observer server interface, uses the appropriate sensor at the appropriate time to perform a

measurement, and sends the result of the measurement to the observer server interface in
the form of an event.

Observer Server Interface. The observer server interface provides an interface for

observers to access a distributed event service. This event service allows managers to

subscribe or query events from observers and for observers to send events to managers.

2.1.2. Actor

An actor is a process on a computer system that can be asked to perform actions. These actions

are made from the actor process and could affect local or remote resources, services, and

applications. An actor consists of the following components:



Actuator. An actuator is a component that can be used to perform a specific action. For

example, an actuator can be used to start a daemon, submit a job to a scheduler, or change

a variable in an application An actuator is a passive component that does not perform any

actions until it is asked to by the actuator manager. We are providing a set of actuators as

part of our framework, but users will most likely need to implement actuators for their

own specific purposes.

Actuator Manager. The actuator manager receives requests to perform actions from the

actor server interface, uses the appropriate actuator to perform the action, and sends the
results of the action back to the actor server interface.

Actor Server Interface. The actor server interface provides an interface to a distributed

action service that transmits requests for actions and their results. The purpose of the

distributed action service is to allow a manager to request that an actor perform an action,

and then transmits the results of the action back to the manager.

2.1.3. Manager

A manager is a process that asks observers for information, reasons upon that information, and
asks actors to take actions when the observations indicate that actions need to be taken. A

manager consists of the following components:

• Management Logic. The management logic receives events from the observer client

interface, reasons upon this information to determine if any actions need to be taken, and

then takes any actions using the actor client interface. There are two ways to implement

the management logic:

o Write C or C++ code that contains a series of if and case statements, a state

machine, or whatever code is needed to perform the management functions.

o Use an expert system and write management rules. We are experimenting with

using an expert system to simplify the writing of managers. Without an expert

system, the user must write a (potentially large) series of conditional statements to

examine events, determine what they mean, and perform the appropriate actions.

With an expert system, a user defines a (hopefully smaller) set of rules and the

expert system uses these rules to reason on events and perform actions. We have

incorporated the CLIPS expert system [1, 18] into our framework for this purpose.

The management rules are written by the user and tell the expert system how to

operate.

• Observer Client Interface. The observer client interface is used to request events from
observers and receive those events.

• Actor Client Interface. The actor client interface is used to request that actors perform
actions and to receive the results of those actions.

2.1.4. Directory Service

A common component of computational grids are directory services or grid information services

[15, 27]. A directory service is searchable distributed database that is accessed using the

Lightweight Directory Access Protocol (LDAP) [20, 21]. We use a directory service to store the

4



locations of observers and controllers, describe what types of observations or actions they

provide, and allow managers to search for the observers and controllers that provide the

information or actions they are interested in.

2.2. Implementation

We have initially implemented the CODE framework in C++ to take advantage of the features

provided by object-oriented languages when writing modular and extensible code. One of the

main design goals of our code is modularity so that the code can easily be extended and

modified. For example, the definition of Sensor and Actuator interfaces allows us to easily

implement a variety of sensors and actuators while the sensor manager and actuator manager

components simply understand the Sensor and Actuator interfaces but can manage any type of

sensor or actuator. Other examples are the Transport and Encoder interfaces that provide

interfaces for transmitting and encoding a set of event and action messages. This allows us to

hide the implementation of various techniques for transmitting and encoding data. At this point,

the CODE framework supports communication using TCP, UDP, and SSL. The SSL interface

uses OpenSSL [11] and is compatible with the Globus security mechanisms.

The protocol we use to communicate between observers and managers is compatible with the

event protocol [25, 26] that is being defined in the Grid Forum Performance Working Group [6].

This protocol encodes data using the eXtensible Markup Language (XML) [14] and CODE uses

the expat XML parser [4] to decode messages. Further, the format of the data CODE places in

the directory service is compatible with the LDAP schemas [24] being defined in the Grid Forum

Performance Working Group.

As we mentioned previously, we are using the CLIPS expert system [18] in this project and we

are initially targeting the Linux, Solaris, and IRIX operating systems. We expect to port our code

to other flavors of Unix and to the Cygwin system that provides an Unix-like environment for

Microsoft Windows. The framework is implemented in a multi-threaded manner using pthreads.

3. Example Uses of CODE

This section describes two applications that we are developing that use the CODE framework.

The first application provides observation and control of the resources and services that are part

of a Globus-based computational grid. The second application is an alternative implementation

of an LDAP-based grid information service.

3.1. Grid Control System

As computational grids grow, it becomes very difficult to ensure the correct operation of the

large number of resources and services that make up a grid and to configure the services that are

available on a grid. We are developing a Grid Control System (GCS) to assist with these tasks in

a Globus-based grid such as the NASA Information Power Grid. Figure 2 shows the architecture

of this system.

5



Ping

Manager

Actor II Observer

GRAM Server

Figure 2. Architecture of the Grid Control System: A system to observe and control the resources

and services of a Globus-based computational grid.

The figure shows CODE managers, actors, and observers on three different types of systems.

First, a GRAM host is a computer system that is running the Globus Resource Allocation

Manager (GRAM) service. This is the service that allows a user to execute an application on this

computer system from a remote host. As you would expect, the GRAM service is widely

deployed in Globus-based computational grids and this service, and the host it runs on, must be

monitored and managed. The GRAM host is monitored so that an administrator knows that it is

operating correctly: it hasn't crashed, it isn't overloaded, and so on. The GRAM service itself is

monitored to determine if its daemons are executing, that it is updating the grid information

service correctly, that users are not having problems executing applications, and so on. It is also

very useful if the GRAM service can be configured from a remote location. This configuration

includes adding or removing users, adding or removing certificate authorities, changing the

certificate signing policy, and changing the amount of debugging information that is produced.

In addition to these configuration actions, the actor on this system is used to start GRAM

daemons, archive log files, and send emails.

To improve the robustness and scalability of the Grid Control System, a manager is running on

each of the GRAM hosts. The purpose of this manager is to handle local problems, if it can, so

that the relatively centralized management workstations do not have to be contacted to solve

every problem. If the management workstations always have to be contacted, the robustness of

the system would be reduced because the entire system would depend on always being able to



contact the management workstations and the scalability would be reduced because of the

increased demands placed upon the management workstations. The manager on the GRAM hosts

can be used to restart the local GRAM daemons if they crash, archive log files if they get too

large, and so on.

The second system that has managers, actors, and observers is a GIS host. A GIS host is running

an LDAP daemon that is part of an LDAP-based Grid Information Service (GIS). A GIS is used

to store information about computer systems, networks, Globus daemons, installed software,

applications, and so on. This information is necessary for the correct performance of many

applications and services so it is critically important that it be available. The GCS can assist with

the task of operating this service in several ways. The GCS can observe properties such as the

load on the host, the status of the LDAP server processes, the size of the log files, the response

time of the LDAP server, and the load being placed on the LDAP server (for some LDAP

servers). This information allows a CODE manager or an administrator to notice potential

problems and take corrective action. For example, if the LDAP server goes down, a CODE

manager can restart it. If the log files are about to use up available disk space, they can be

archived. If the response time of the LDAP server becomes unacceptably low, it can be

reconfigured to limit the number of simultaneous users or to refer requests to other servers.

Similarly to the configuration of the Grid Control System on a GRAM host, a GIS host also has a

manager for performing local management tasks and improving the scalability of the system.

The third system that has managers, actors, and observers is a management workstation. A

management workstation is used as a centralized point to gather information about the operation

of a grid and to allow an administrator to control or configure a grid. The manager on this host

can receive information from the observers on the GRAM and GIS hosts. In addition, the

observer on a management workstation can be used to gather other data such as pinging GRAM

and GIS hosts to see if they are operating. The actor on a management host can be used for

actions such as sending emails when problems are seen.

A management workstation can be a bottleneck, but there are several steps that can help this

situation. First, the GRAM and GIS hosts have managers to handle some of the problems that

occur on those hosts. This reduces the communication traffic to a management workstation.

Second, the rate at which information is sent to the management workstation by the observers on

the GRAM and GIS hosts can be adjusted. As the number of GRAM and GIS hosts increases, the

data rate from each host can be decreased. Third, a hierarchy of managers could be used with

higher-level managers having less frequently updated information and]or summary information.

The management workstations also have a transient Graphical User Interface (GUI) that

interfaces to the manager. The purpose of this GUI is to organize and present observations and

actions to the administrator in a convenient manner. For example, instead of only displaying the

list of users that have access to each system, this same data can be presented as the list of

systems each user has access to. Similarly, instead of issuing one command to add a user to each

system, a command to add a user to many systems at once can be provided. The GUI will also

provide notifications to call attention to situations that need to be addressed using visual clues

such as pop-up dialogs or flashing readouts or by sending email. These features improve the

scalability of the system by increasing the number of resources and services that an administrator

can manage.

7



3.2. An Alternative Grid Information Service

A computational grid needs an information service to store information about resources, services,

users, applications, and so on. Currently, grid information services are accessed using the LDAP

protocol and implemented using the open source OpenLDAP implementation or commercial

implementations such as the one provided by IPlanet (formerly provided by Netscape). The

LDAP protocol supports adding, deleting, and searching objects in a LDAP directory service.

The data in an LDAP directory service is organized in a hierarchy called the directory

information tree (DIT), usually based on real-world organizations and sub-organizations. For

example, the root object may be for the Grid (o--Grid in LDAP terminology). This object would

then have a NASA child object (o--National Aeronautics and Space Administration), which

would have an Ames Research Center child object (ou--Ames Research Center), and so on. This

organization means that every object in the database has an address that consists of the path to

reach the object from the root of the tree.

When multiple servers are used to store the data in a DIT, this data is partitioned in a hierarchical

manner. For example, the data for Ames Research Center (all objects under ou--Ames Research

Center, o--National Aeronautics and Space Administration, o--Grid) might be located on a server

at Ames. LDAP uses the notion of referrals to link LDAP servers. To continue the previous

example, the LDAP server at Ames has a referral upward to the LDAP server for NASA. The

NASA server also has referrals down to the Ames server, the Glenn server, and so on. This way

a client making a query to the Ames server for information in the Glenn Research Center sub-
tree would be referred to the NASA LDAP server that would then refer the client to the Glenn

server.

One of the main disadvantages of LDAP server implementations is that the goal of improving

search performance has resulted in slow and costly updates. Thus, if the data that is contained in

an LDAP server is dynamic and must be updated frequently, the LDAP server may spend all of

its resources updating its data and have no resources available to perform searches. This problem

occurred in early Globus testbeds when there were only one or two LDAP servers used for all

users of Globus. Two approaches were taken to address this problem.

First, the Globus group started developing the MDS-2 [13] grid information service. The second

version of this implementation is about to be released, but both implementations are essentially

hierarchies of OpenLDAP servers. The lowest-level servers in this hierarchy run on each host

that has Globus GRAM services installed. These servers do not have traditional databases.

Instead, when they are queried, they run a program to gather information from the host by mainly

examining files created by Globus. The high-level servers receive search requests from users,

forward these request to one or more child servers, merge the request results from the child

servers, and pass the merged results back to the user. The high-level servers also cache the

responses they receive from child servers for some period of time to improve performance. The

advantages of this approach is that dynamic data is not moved from where it is generated until it

is needed by a user. The main disadvantage of this approach is that users have found it to be

unacceptably slow. This may result from a combination of the OpenLDAP implementation being

relatively slow [27], and the fact that more servers are contacted because a user request typically

goes from a high-level server, to a low-level server, to a high-level server, and then to the user.

Second, groups such as the IPG developers simply deployed multiple LDAP servers (typically

commercial) so that the relatively frequent updates of information are not so concentrated on any



one server that they degrade search performance. The advantages of this approach are that high-

performing commercial LDAP servers can be used. The disadvantages are that these servers can

still be overwhelmed with updates and it can be the case that the dynamic information is rarely

accessed by users, making the frequent updates irrelevant.

Our approach to providing a scalable LDAP-based grid information service is to extend the

second approach by using a hierarchy of commercial LDAP servers to contain static information

and older versions of dynamic information while using the CODE framework to obtain up-to-

date dynamic information and to provide subscriptions. The goal of this implementation is to

provide a higher-performing information service that combines the strengths of LDAP directory

services and grid event services. The strengths of an LDAP directory service are that it can be

distributed across many computer systems and it can be searched efficiently. The strengths of an

event service, such as the one provided by CODE, are the low overhead to provide events and

the ability to subscribe for events. The architecture of this system is shown in Figure 3.

LDAP Server Portal

referrals

static data
Manager

LDAP Server LDAP Server

LDAP add/modify at
an appropriate rate

Gateway Gateway

subscriptions
and events

Observer Observer Observer Observer
OOO OOO

subscriptions, queries, and events

Figure 3. The architecture of an alternative grid information service that uses the CODE
framework as the main information source.

This architecture shows that we are using a typical LDAP configuration with low-level LDAP

servers containing data and higher-level servers referring to lower-level servers and perhaps

containing data as well. We will use high-performing commercial LDAP servers in this

implementation. To provide the information that is currently in grid information services, we will

run a CODE observer on each computer system that is running a Globus GRAM server. These

observers can provide information, in the form of events, about the computer system such as

load, operating system, number of CPUs, scheduling information, information about the Globus

deployment and any known Globus jobs, and so on. One of the entities that will receive this

information is what we call a gateway. A gateway subscribes to observers for information and

then writes this information into an LDAP server running on the same computer system. This



implies that the gateway is acting as a CODE manager and speaking the CODE event protocol to

observers and is also an LDAP client and is modifying the data in the local LDAP server.

The gateway has two important functions. First, it translates each event it receives into an LDAP

object at a specific location in the LDAP directory tree. Second, it manages the rate at which it

modifies data in the LDAP server so that the LDAP server is not overwhelmed with updates.

One way the gateway can accomplish this is by balancing the frequency each observer sends

events with the number of observers that are sending events so that the overall update rate is less

than some threshold. This threshold can be determined using experiments to measure the search

performance obtained from an LDAP server under different update loads or the gateway can

measure the search performance of the LDAP server as it executes. The gateway could also

operate in a more sophisticated manner by using the access logs that are generated by many

LDAP servers. These logs indicate which entries users accessed and therefore which entries the

users are more interested in. The gateway can use this information to decide which entries (the

ones more frequently accessed) should have more up-to-date information.

4. Summary and Future Work

Our efforts to deploy a computational grid at NASA have demonstrated the need for tools to

observe and control the resources, services, and applications that make up grids. This has led to

our development of CODE which provides a secure, scalable, and extensible framework for

making observations from remote computer systems, transmitting this observational data to

where it is needed, performing actions from remote computer systems, and analyzing
observational data to determine what actions should be taken.

A prototype of our framework is complete and we are continuing to improve it. In addition to the

core framework, we have implemented sensors for measuring various properties such as process

status, file characteristics, disk space, CPU load, network interface characteristics, and LDAP

search performance. We have also implemented a few simple actuators: "run a program" and

"send an email". We are currently developing two applications using CODE: a system to monitor

and manage resources and services in large computational grids, and a grid information service.

As part of these applications we are developing new sensors, new actuators, and application-

specific components such as the event-to-LDAP gateways that are needed for the information

service implementation.

In the future we will continue to improve and extend our framework as it is used for new

applications. For example, we will add new sensors and actuators, we may incorporate new

security mechanisms such as Kerberos, and we will most likely provide Java implementations of

client libraries so that it will be easy to use this framework from GUIs. Further, we will track the

standards for grid event services that are being developed in the Global Grid Forum and will

strive to be compatible with those standards.

Acknowledgments

We gratefully acknowledge the help of Abdul Waheed who participated in the early phases of

this project and of Jerry Yan who provided the initial motivation. We also wish to thank Dan

Gunter, Ruth Aydt, Brian Tierney, Dennis Gannon, and Valerie Taylor for the many useful
discussions we have had related to this work both inside and outside of the Grid Forum. This

work is supported by the NASA HPCC/CAS program.

10



References

[1] "CLIPS: A Tool for Building Expert Systems," http://www.ghg.net/clips/CLIPS.html.
[2] "Condor High Throughput Computing," http://www.cs.wisc.edu/condor/.

[3] "The DOE Science Grid," http://www-itg.lbl.gov/Grid.

[4] "The Expat XML Parser," http://sourceforge.net/projects/expat/.
[5] "The Globus Project," http://www.globus.org.

[6] "Grid Forum Performance Working Group," http://www-didc.lbl.gov/GridPerf/.

[7] "The Legion Project," http://www.cs.virginia.edu/~legion/.
[8] "The NASA Information Power Grid," http://www.ipg.nasa.gov.

[9] "The National Computational Science Alliance,"
http://www.ncsa.uiuc, edu/access/index.alliance.html.

[10] "The National Partnership for Advanced Computing Infrastructure," http://www.npaci.edu/.

[11] "The OpenSSL Project," http://www.openssl.org.

[12] C. Catlett and L. Smarr, "Metacomputing," in Communications of the ACM, vol. 35, 1992, pp. 44-
52.

[13] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, "Grid Information Services for

Distributed Resource Sharing." In Proceedings of the The 10th IEEE International Symposium on
High Performance Distributed Computing, 2001.

[14] D. Fallside, "XML Schema Part 0: Primer," http://www.w3.org/TR/xmlschema-0/.
[15] S. Fitzgerald, I. Foster, C. Kesselman, G. v. Laszewski, W. Smith, and S. Tuecke, "A Directory

Service for Configuring High-Performance Distributed Computations." In Proceedings of the 6th

IEEE International Symposium on High Performance Distributed Computing, 1997.
[16] I. Foster and C. Kesselman, "Globus: A Metacomputing Infrastructure Toolkit," International

Journal of Supercomputing Applications, vol. 11, pp. 115-128, 1997.

[17] I. Foster and C. Kesselman, "The Grid: Blueprint for a New Computing Infrastructure,".: Morgan
Kauffmann, 1999.

[18] J. Giarratano, "The CLIPS User's Guide,"., 1998.
[19] A. Grimshaw, W. Wulf, J. French, A. Weaver, and P. R. Jr., "Legion: The Next Logical Step

Toward A Nationwide Virtual Computer," Department of Computer Science, University of

Virginia CS-94-21, June, 1994 1994.
[20] T. Howes and M. Smith, LDAP: Programming Directory-Enabled Applications with Lightweight

Directory Access Protocol: Macmillan Technical Publishing, 1997.

[21] T. Howes, M. Smith, and G. Good, Understanding and Deploying LDAP Directory Services:

MacMillan Technical Publishing, 1999.
[22] W. Johnston, D. Gannon, and B. Nitzberg, "Grids as Production Computing Environments: The

Engineering Aspects of NASA's Information Power Grid." In Proceedings of the 8th IEEE
International Symposium on High Performance Distributed Computing, 1999.

[23] M. Litzkow and M. Livny, "Experience with the Condor Distributed Batch System." In

Proceedings of the IEEE Workshop on Experimental Distributed Systems, 1990.
[24] W. Smith and D. Gunter, "Simple LDAP Schemas for Grid Monitoring," The Global Grid Forum

GWD-Perf-13-1, 2001.

[25] W. Smith, D. Gunter, and D. Quesnel, "A Simple XML Producer-Consumer Protocol," The
Global Grid Forum GWD-Perf-8-2, 2001.

[26] W. Smith, D. Gunter, and D. Quesnel, "An XML-Based Protocol for Distributed Event Services."

In Proceedings of the The 2001 International Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, NV, 2001.

[27] W. Smith, A. Waheed, D. Meyers, and J. Yan, "An Evaluation of Alternative Designs for a Grid

Information Service." In Proceedings of the 9th IEEE International Symposium on High
Performance Distributed Computing, 2000.

11


